Robust Automated Test Assembly for Testlet-Based Tests: An Illustration with Analytical Reasoning Items
نویسندگان
چکیده
In many high-stakes testing programs, testlets are used to increase efficiency. Since responses to items belonging to the same testlet not only depend on the latent ability but also on correct reading, understanding, and interpretation of the stimulus, the assumption of local independence does not hold. Testlet response theory (TRT) models have been developed to deal with this dependency. For both logit and probit testlet models, a random testlet effect is added to the standard logit and probit item response theory (IRT) models. Even though this testlet effect might make the IRT models more realistic, application of these models in practice leads to new questions, for example, in automated test assembly (ATA). In many test assembly models, goals have been formulated for the amount of information the test should provide about the candidates. The amount of Fisher Information is often maximized or it has to meet a prespecified target. Since TRT models have a random testlet effect, Fisher Information contains a random effect as well. The question arises as to how this random effect in ATA should be dealt with. A method based on robust optimization techniques for dealing with uncertainty in test assembly due to random testlet effects is presented. The method is applied in the context of a high-stakes testing program, and the impact of this robust test assembly method is studied. Results are discussed, advantages of the use of robust test assembly are mentioned, and recommendations about the use of the new method are given.
منابع مشابه
LSAC RESEARCH REPORT SERIES Robust Automated Test Assembly for Testlet-Based Tests: An Illustration With the Analytical Reasoning Section of the LSAT
The Law School Admission Council (LSAC) is a nonprofit corporation whose members are more than 200 law schools in the Council was founded in 1947 to facilitate the law school admission process. The Council has grown to provide numerous products and services to law schools and to more than 85,000 law school applicants each year. All law schools approved by the American Bar Association (ABA) are ...
متن کاملLSAC RESEARCH REPORT SERIES Identifying Critical Testlet Features Using Tree-Based Regression: An Illustration With the Analytical Reasoning Section of the LSAT
The Law School Admission Council (LSAC) is a nonprofit corporation that provides unique, state-of-the-art admission products and services to ease the admission process for law schools and their applicants worldwide. More than 200 law schools in the United States, Canada, and Australia are members of the Council and benefit from LSAC's services. may change without notice at any time. Up-to-date ...
متن کاملLSAC RESEARCH REPORT SERIES An Overview of Research on the Testlet Effect: Associated Features, Implications for Test Assembly, and the Impact of Model Choice on Ability Estimates
The Law School Admission Council (LSAC) is a nonprofit corporation whose members are more than 200 law schools in the Council was founded in 1947 to facilitate the law school admission process. The Council has grown to provide numerous products and services to law schools and to more than 85,000 law school applicants each year. All law schools approved by the American Bar Association (ABA) are ...
متن کاملTestlet-Based Multidimensional Adaptive Testing
Multidimensional adaptive testing (MAT) is a highly efficient method for the simultaneous measurement of several latent traits. Currently, no psychometrically sound approach is available for the use of MAT in testlet-based tests. Testlets are sets of items sharing a common stimulus such as a graph or a text. They are frequently used in large operational testing programs like TOEFL, PISA, PIRLS,...
متن کاملMinimizing the Testlet Effect: Identifying Critical Testlet Features by Means of Tree-Based Regression
Standardized tests often group items around a common stimulus. Such groupings of items are called testlets. The potential dependency among items within a testlet is generally ignored in practice, even though a basic assumption of item response theory (IRT) is that individual items are independent of one another. A technique called tree-based regression (TBR) was applied to identify key features...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017